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EQUATIONS OF MECHANICS OF A GAS-PARTICLE MIXTURE 

A. P. Ershov UDC 532.529 

We consider the non-steady, one-dimensional motion of a gas containing suspended parti- 
cles. For subsonic relative velocities of the gas and particles, the equations of the system 
have two complex characteristics [i] corresponding to instability of the solution to the 
Cauchy problem. The physical cause of the instability [2, 3] is a rise in the filtration 
velocity of the gas and a corresponding drop in pressure in regions where there is an in- 
crease in particle concentration. The pressure gradient encourages particle coagulation and 
perturbations grow exponentially. The rate of growth is inversely proportional to the wave- 
length of the perturbation. 

It is important to be able to separate real physical flow instabilities from formal in- 
stability arising because of approximations in describing the mixture. An example of the 
latter is the rapid growth of short wavelength perturbations. In [3] an essential difference 
was pointed out between problems admitting steady motion of the phases (suspension of layer, 
precipitation of a suspension) from those of the non-steady type (passing of a shock wave 
through a suspension in gas). In the latter case, the velocity of relative motion of the 
phases goes to zero with time, and if the nonphysical fluctuations are removed, the Cauchy 
conditions can be correct. In the numerical solution of such problems, this is always under- 
stood. 

In [3, 4] the random motion of the particles was considered as a stabilizing effect. 
In the present paper, we consider the non-steady-state problem at small particle concentra- 
tions, where the random motion of particles is not important. The equations obtained here 
include explicitly the interphase forces and the relative volume of the dispersed phase aver- 
aged over the volume of the particle. Thus the growth of short wavelength perturbations is 
suppressed. 

i. Statement of the Problem and Preliminary Estimates. Following the treatment in 
[i, 3], we ignore the internal properties of the subsystem in the equations of mass and mo- 
mentum and limit the discussion (as in [3]) to the case of a barotropic gas. Thus we do not 
have to deal with the energy equation. The system of equations has the form [3, 5]: 
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OprD/Ot -t- OUpu/Oz = O, p~(Oz, c)t + Oc~v/Ox) = O, 

pcp(Ou/Ot + uOu/Oz) + ~p@/Oz ~ - -n /D,  

p~a(c)~,."c)t + vOv/Oz) + a @ / O x  = n/~,  

<p + ~ = 1, ~z = n V ,  p = p(9) ,  

(l.1) 

where ~ and ~ are the volume fractions of gas and particles, 9 is the gas density, 0s is the 
(constant) density of particles, u and v are the velocities of gas and particles, p is the 
gas pressure, n is the number concentration of particles, V is the particle volume, fD is 
the interphase dissipative force, which includes viscous dissipation, ground resistance, and 
the associated mass force. Besides fD, we consider the buoyancy force (--V3p/3x for a single 
particle). We assume that inertial forces capable of causing prolonged steady motion are 
zero. 

We will assume that fD is a function of the flow variables. The associated mass force 
(involving derivatives) is ignored; this will be reasonable when Ps >> P' The associated 
mass force does not qualitatively change the situation, as shown in [3]. The system (i.i) 
always has two real characteristics; for ~ § 0 they correspond to sound waves in the gas. 
If the relative velocity of the phases w = u -- v is subsonic, the other two characteristics 
are complex. For ~ << i they can be written explicitly [i]. 

= dx/dt  = v • i ~ w / ~ l  --w~/c~, ' (1.2) 

where c is the sound velocity in the gas, and]/~9/~9~<<I. 
In the solution of the Cauchy problem, complex characteristics lead to exponential 

growth of perturbations. The characteristic growth time of a perturbation with wavevector 
k is 

N (i. 3) 

We estimate now the characteristic time for the equalization of the velocities of the 
two phases. We consider the simplest case, where all parameters are independent of x. Then 
from (i.i) 

Ow/Ot = - - n f D ( t / p ~  + i/p~). 

And from this we obtain an estimate for the equalization time 

te N (R/CDw)(p/ps + ~ i~) -1 .  (1.4) 

where R is the particle radius, and C D is the resistance coefficient. If the streamlining 
of particles is not too great, C D ~ i. 

An initial perturbation grows markedly for tp ~ t e. Comparing (1.3) and (1.4), we find 
that the condition kR >> 1 must be satisfied. Perturbations with wavelengths of order R or 
less are amplified. The rate of growth for short wavelength perturbations can be as large 
as desired, and the Cauchy conditions for (i.i) are incorrect. 

In the numerical solution, an instability is observed if the step size of the computa- 
tional net iS of order R or less. Usually the opposite case occurs. For small step sizes, 
the instability is suppressed by introducing an artificial viscosity since (I.i) is not ap- 
plicable for rapidly varying processes. It is also possible to smooth out fluctuations in 
the solution. According to [6], the perturbation growth of the smoothed (i.e., averaged 
over a region small compared with that characterizing the flow) ~ is bounded, and the Cauchy 
conditions for (i.i) are correct. 

Another way of regularizing the solution within the framework of (i.i) is to refine 
the physical model used as the starting point. The random motion of particles leads to a 
pressure in the particle "gas" and to diffusion effects [3, 4]. Unlike the case of dense 
mixtures with prolonged steady motion considered in [4], in a dilute mixture a local equi- 
librium between the random motion of particles and the gas flow cannot be established. 

The particles are streamlined by the gas and thus the particles experience hydrodynami- 
cal interaction forces which are transmitted through the surrounding gas. For a random 
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particle distribution, the force reduces to the interaction of neighboring particles. Ac- 
cording to [71, the interaction force between two spheres of radius R, separated by distance 

>> R in an ideal fluid is given by fi ~ 2~pw2R~/14" We use this expression as a qualita- 
tive estimate of the actual force. Since fi acts during the equalization time te of veloci- 
ties of the phases, we estimate the resulting random velocity 

vc ~ w(R/l)4(i + a p J ~ p ) - I  ~ wa413. 

2 a l a  The pressure of the particle "gas" is given by p= ~ QsVc ~ ps w ~ - . According to [3], tak- 
ing into account p= as ~ § 0 does not insure stability because the exponent of ~ is greater 
than two. 

The random displacement of a particle after time t e is 

l c N  v~t~na4/30(p/p,  + ~ I ~ ) - ~ < R ~ / 3 < < R .  
P3 

This gives an estimate of the wavelength over which diffusion effects are felt. For small 
enough e there exist waves that grow a finite, but large number of times after time t e. 

It is shown below that in the revised statement of the problem, a limit to growth appears 
even for long wavelengths of order R. Therefore, diffusion effects are not crucial in a di- 
lute mixture. Below we will ignore the random motion of the particles. 

2. Averaged Equations and Interphase Relations. In order to study the stability at 
short wavelengths, we need an equation applicable for rapidly varying flows. Normally, 

slowly varying motion of the fluid is considered, where the characteristic distance L is 
large compared to the separation between particles I. We can then choose a microscopic vol- 
ume of linear dimension Ax >> I and average the equations of motion over this volume [8]. 
The validity of using averaged equations in describing rapidly varying motion, however, is 
not so obvious. 

The required system of equations can be obtained by using a less well-known method of 
averaging. This is an average with respect to area, rather than volume. It is known that 
in a smooth, continuous flow, the average over a microscopic volume leads to the same re- 
sults as an average over a microscopic area [8]. Indeed, the flow through the boundary of 
a reference volume is a surface-averaged quantity, and the equations of motion are closed 
by assuming the equivalence of volume and surface averages. A representative area with a 
linear dimension much larger than ~ will intersect the trajectories of a large number of 
particles, and a statistically meaningful average can be performed with respect to such an 
area. The form of the general conservation equations is not changed under surface-averaging 

[9]. 

However, the range of applicability of the surface-averaged quantities is wider. In 
the most instructive case of one dimension, averaging over an area normal to the direction 
of motion allows the study of sharp gradient flows because the rapid variation of the quan- 
tities perpendicular to the area does not affect the averaging procedure inside the area. 

Thus in deriving the averaged equations, we can use a thin reference~ volume (Fig. i) 
with a thickness &x much less than Z and possibly less than R. Those particles entirely 
within the reference volume can intersect its boundaries twice. The derivation is done in 
the usual way; below we present the equations with some comments. 

For the solid phase, we ignore the random motion of particles, and it is convenient to 
consider the centers of mass of the particles as mass points. For a concentration n and a 
velocity v we have 

On/Ot + Onu/Ox = O, p~V(Onu/Ot + Onu~/Ox) = nf, ( 2 . 1 )  

w h e r e  V i s  t h e  p a r t i c l e  v o l u m e ,  f i s  t h e  f o r c e  on a p a r t i c l e  a t  p o s i t i o n  x a nd  t i m e  t f r o m  
t h e  g a s .  

Q u a n t i t i e s  p e r t a i n i n g  t o  t h e  gas  a r e  a v e r a g e d  o v e r  a c r o s s  s e c t i o n  o f  t h e  gas  p h a s e ,  
and  t h e  v e l o c i t y  u and  u :  a r e  a v e r a g e d  w i t h  w e i g h t  p .  We l e t  a and  ~ be  t h e  a r e a  f r a c t i o n s  
o f  t h e  t w o - p h a s e  medium a t  t h e  c r o s s - s e c t i o n  p l a n e  x = c o n s t .  From F i g .  2 ,  we c a n  s e e  t h a t  
a p a r t i c l e  whose  c e n t e r  l i e s  a t  a d i s t a n c e  ~ f r o m  t h e  r e f e r e n c e  p l a n e  w i l l  o v e r l a p  by an  
a r e a  A(~) d e p e n d e n t  on  t h e  p a r t i c l e  s h a p e .  Then  a c a n  be  w r i t t e n  a s  an  i n t e g r a l  o v e r  t h e  
p a r t i c l e  c r o s s  s e c t i o n :  
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a ( x , t ) =  ~ A ( ~ ) n ( x + ~ , t ) d ~  
-R ( 2 . 2 )  

or more compactly as an integral over the particle volume V 

a : .[ ndV,  ~ : l - -  a. ( 2 . 3 )  
v 

I f  n i s  s l o w l y  v a r y i n g ,  ( 2 . 2 )  and  ( 2 . 3 )  r e d u c e  t o  a = nV. 

The e q u a t i o n  of  mass  f o r  t h e  gas  ha s  t h e  same fo rm as  i n  ( 1 . 1 ) .  We w i l l  w r i t e  t h e  e q u a -  
t i o n  o f  momentum f o r  t h e  medium as  a w h o l e ,  t h u s  a v o i d i n g  i n t e r p h a s e  f o r c e s  i n s i d e  t h e  r e f e r -  
e n c e  v o l u m e :  

apq)~ apq~ <u2> a 
at H- ax H- -a-x (p(p - -  Ta) -F G ~- O. 

We let z be the stress averaged over the particle cross section (for solid particles, a micro- 
scopic stress cannot be introduced, but the average over the cross section of each particle 
is completely determined by the action of the gas). Finally G is the Langrangian rate of 
change of momentum of the solid phase 

This expression can be obtained in the same way as (2.2) and (2.3). Carrying the differen- 
tiation under the integral sign and using (2.1), we have 

I fn/dV. (2.4) G=T. 
V 

We introduce the gas velocity fluctuation 6u 2 = <u2>- u 2 and separate out the pressure 
(averaged with respect to the gas) from the stress in the solid phase: T = p z'. The 
sign of the correction %" is chosen for convenience. After the usual transformations, we 

obtain the equations 

an~at + anv/ax  = O, av/at  + vav/ax = ] / p N ,  ( 2 . 5 )  

apcp/at + ap~u/r~x ---- O, 

au 
a (pqDfu ~ + ~ ' a )  = G. 

With the help of (2.4), the momentum equation of the mixture takes on a form like the momen- 
tum equation for the gas, in which G appears as a force. 

The system (2.5) can be used for rapidly varying motion if f, ~u 2, and ~P are known. 
The usual relations for these quantities are applicable, with certain restrictions, only for 
slowly varying flow. Nevertheless, we can do some preliminary computations. 
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We write the microscopic stress tensor of the gas in the form 
! 

where ~ i s  n e a r  z e r o  e x c e p t  n e a r  t h e  p a r t i c l e s .  Then f o r c e  f n a t u r a l l y  s e p a r a t e s  i n t o  two 
p a r t s  

/ ~ /A + /D = - -  ~ ; d S l  + ,f ~ h d S h  
s s 

where S i s  t he  p a r t i c l e  s u r f a c e .  The a v e r a g e  p r e s s u r e  p i s  f o r m a l l y  d e f i n e d  i n  a l l  space  
such  t h a t  the  buoyancy  f o r c e  fA can be t r a n s f o r m e d  u s i n g  Gauss '  t heo rem i n t o  an i n t e g r a l  
ove r  t he  p a r t i c l e  volume.  

V 

The dissipative force fD arises from deviations of the pressure from the average value near 
the particles and from viscous stresses in the gas. For slowly varying flow, in which we 
neglect the associated mass force component of fD, it is customary to consider these forces 
as functions of the average quantities. 

However, there is no justification for assuming the same is true for rapidly-varying 
flow. Therefore (2.5) with the conventional expression for fD is valid only for motion with 
a characteristic distance scale L >> R (but possibly L < l). It would be extremely diffi- 
cult to find fD for the general case. 

Below we treat the simpler problem of stability of slowly-varying flow. If we apply a 
small short wavelength perturbation to the solution, it is reasonable to assume that fD is 
basically determined by the slowly varying flow, since perturbations of fD will be smoothed 
out because it is an integral over the particle surface. Therefore in treating stability, 
we assume that fD depends on the gas parameters averaged over the particle. More detailed 
restrictions on fD are considered in the next section. 

3. Stability Analysis. The instability of (i.i) follows from (2.5) with the following 
assumptions: 

i) the flow is slowly varying so that a = nV, fA = --V6p/6x, G = nf = -~p/Sx + nfD; 
2) the dissipative force fD is a known function of the flow parameters; 
3) fluctuations in the gas velocity and additional stresses in the particles can 

be ignored. 

The first assumption is the most essential and leads to a purely differential system of 
equations. We first take into account a correction of the form 9~6u ~ + ~'~ in the momentum 
equation, keeping the first two assumptions. The fluctuation 5u 2 arises from streamlining 
of particles and can be written in the following form [8], assuming a dilute mixture and 
velocities much less than the speed of sound: 

6u 2 = 6 1 ( ~ ) w  ~, 61 N ~. 

For velocities which are not too small, the additional stress in the particles is given by 
r~ ~ pw2; this is of the form of a pressure drop in the gas around the particle. We thus 
have 

p~6u 2 + T'a = 6(~)p(u - -  v) ~, 6(~) ~ ~. (3 .1 )  

I t  i s  e s s e n t i a l  t h a t  5(a)  > 0 b e c a u s e  on a v e r a g e  x" > 0 ( t h e  p a r t i c l e  i s  " s q u e e z e d "  by 
the  gas f l o w ) .  

Analysis of the characteristics of system (i.i) with the modified momentum equation of 
the gas 

(Ou Ou) Op O (u__  v)2 = n/D 
P~ ~ - +  u b-Tz + ~b-Tx+b-Tx6P 

leads to the equation 
[ (u  - -  ~ ) ( u  - -  ~ + 2 8 w / ~ )  - (c a + 8 w 2 / ~ ) ] ( v  - -  ~)~ 

= 2c2~2w(v - -  k)6/a + c2~2[(u - -  ~)(u - -  ~ + 26w/~) + w~d6/da].  
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Taking into account that 6 - ~ and dS/d~ ~ 1 and positive, as before we have two complex 
characteristics. To first order in ~ they are given by 

% = v:e:: i~w ] /1  -6 d S / d a / ] / 1  - -  W2/cC 

The imaginary part of %, determining the growth constant of the instability, is of the same 
order as in (1.2). Thus the correction (3.1) does not change the situation; the small fac- 
tor ~ makes it unimportant in the balance of forces of the gas. Below, these effects will 
be ignored; they can become important only for ~ ~ ~ or close to a surface of discontinuity 
where Z'a and 5u 2 change over a distance of order R and (3.1) becomes of order G on the right 
hand side of the momentum equation. 

We show now that the basic difficulty is the assumption of slowly varying flow. System 
(i.i) is not valid for short wavelengths, and therefore any estimate of the perturbation 
growth factor based on these equations is incorrect. For example, the natural expression 
for the buoyancy force (2.6) is an integral over the particle volume of the pressure gradi- 
ent; in (I.i) this force is --V~p/3x, the first term in a Taylor series. Obviously, (2.6) 
will smooth out short wavelength fluctuations. The same is true of the integral expressions 
for a and G. 

We consider the stability of (2.3) through (2.6) in the general integrodifferential 
form. The unperturbed solution will be taken as slowly varying with a characteristic dis- 
tance scale L >> R. The fluctuations 6u 2 and T" are ignored. The perturbation is denoted 
by a prime and is proportional to the factor exp (i(kx -- wt)). We consider short wavelengths 
such that kL >> 1 (kR can be of order unity). In the linear approximation, we obtain from 

(2.5) 

i o n '  = i k (n ' v  -6 v 'n ) ,  - - ( i (o  - -  ikv)v '  = [ / 9 ~ I  , 

- - p ( p ( i ( o -  iku)u '  + ikp '  = - - G ' ,  

--q)(i(o - -  i ku)p '  -6 i kp~u '  -6 (io~ - -  iku)po~' = O. 

( 3 . 2 )  

Because kL >> i, terms involving derivatives of the unperturbed solution are omitted. We 
take the simplest case, p" = c2~ ". According to (2.2), the perturbation 

R 

= eih~d~ ~ '  n '  ~ A(~) - . 
--R 

For a spherical particle A(~) = v(R 2 -- ~2), and elementary integration leads to the expression 

o~' = ( 4 n R Z / 3 ) n ' F ( k R )  = V n ' F ( k R ) ,  (3.3) 

where F is the particle form factor 

f ( g )  = 3(s in  y/ga _ cos gig2). ( 3 . 4 )  

F is shown in Fig. 3. For y << 1 we have F : 1 -- yi/10 and F = 0(y -2) for y >> i. Thus, a 
is insensitive to long wavelength perturbations. The other integral quantities behave in a 

similar way. 

We have from (2.4) 
R R 

--R --R 

I n  t h e  a b o v e  i n t e g r a l s ,  we c a n  e v a l u a t e  t h e  s l o w l y  v e r y i n g  f u n c t i o n s  f a n d  n a t  t h e  p o i n t  x .  

T h e n  

G' = (In'  + n f ' ) F ( k f t ) .  (3.5) 

Finally, f" = f~ + f~. The first term from (2.6) is elementary: 

/ ~  = - -  i k p ' V F  ( k R ) .  ( 3 . 6 )  

Unfortunately, the dissipative force cannot be expressed in a form applicable to short 
wavelength flows. Therefore, some arbitrariness in determining f~ isunavoidable. If 
fD(P, w) is known for slowly varying flow, we can use the approximation 
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1~ = ]pp'H(kR) + ]~(u'H (kR)--  J),  ]o : O]D/O9, ],~ = O]D/OW. (3.7) 

The formfactor H(kR), whose exact form is not as yet determined, can suppress the dissipative 
force perturbation at short wavelengths; the effect is due to the surface-integral nature of 
fD. We have H(0) = I, and H possibly depends on the Reynolds and Mach numbers of the stream- 
line flow. The velocity v" is constant, and its contribution is not suppressed at any value 
of k. 

We use the notation X = u/k, f* = f/ikpV, f~ = fw/ik0V, f~ = fp/ikV and introduce the 
small parameters r = P/Ps, 7 = nV/~. The system (3.2) and relations (3.3) t~ (3.7) lead to 
the dispersion equation 

)] [ , [ !  �9 (% - -  v ) ( ) ~  - -  v - -  r ] ~ , )  L - -  u)  (% - -  u - -  " f H F ] ~ )  - -  7 - -  "~F (c~  - -  H / * p )  = rTF (c 2 F - -  H I * o ) ( ( ~  - -  u )  2 (3.8) 

H * ~ /* *" v) +/*- - /* (X--v) ) - -  ]w(~.--u) T +  --Lo~;~-- �9 

If we take F = 1 and drop f*, f~ , f~, then (3.8) reduces to the characteristic equation 
for (i.i). 

The right-hand side of (3.8) contains the small factor ry, and for kR >> i, this goes 
to zero at least as fast as (kR) -~ [for H = 0(i)]. Therefore the roots of (3.8) will be 
close to those of the left-hand side, denoted by A i. We have 

A ~ = v ,  A 2 = v + r l ~ = v + f ~ / ' i k P N .  

The propagation velocity of these waves is close to the particle velocity. The imaginary 
part of A2 corresponds to damping of the perturbation (for fw > 0). This inequality can be 
violated only in a narrow critical region. The growth factor of the perturbation--rfw/PV 
is of the smallness of r and is independent of k. After the particle is in the critical 
region a finite time, the growth of the perturbation will be bounded, and it begins to damp 
out with decreasing w. This is a physical instability; fast-moving particles in the critical 
region are decelerated more weakly than slow-moving ones, and an initial particle velocity 
fluctuation grows. 

The roots A3,~ of the square brackets on the left hand side of (3.8) correspond approxi- 
mately to sound waves in the gas; ReA3,~ = u • c. The imaginary parts, to first order in y, 

are 
]m A3,4 = 7FH (]~ -r ]~/c)/2. 

With decreasing w (practically even for w ~ c) the first term in the parentheses dominates. 
Therefore the growth factor will be of order--yFHCDw/R. It is seen from (1.4) that after a 
time re, the growth factor becomes of order unity. 

When w = 0, fw is always positive. From the physically reasonable condition that the 
state of rest of both phases be stable for all k, we obtain restrictions on the formfactor 
H. For w * 0, K(kR)F(kR) > 0. This is always satisfied if H = F; then one must average the 
gas density and velocity in the expression for fD over the particle volume in a similar 
fashion to the other quantities discussed above. This choice is made mostly in the interests 
of simplicity. 

A more accurate calculation of the roots (denoted by %i) is done by evaluating the right- 
hand side of (3.8) (denoted by D below) at A i, The corrections to A3,~ are proportional to 
yr and are therefore not significant. Because of the closeness of At,= to each other, %1,= 
are more complicated: 

* * 2 - -  = .  + +_ + D/(w  ,2). 

For large kR the first term under the square root sign dominates because then D is small; 
this case has already been discussed. When kR ~ i or y > r, the second term can be ignored. 
Then Im %1,2 ~w Y~r(kR) -3/2 and after the equalization time the growth of the perturbation 
will be finite, as before. 

When ]w I ~ c the three roots of the left hand side of (3.8) are close in value and the 
above approximations cannot be used. The term involving D is more significant when the 
three roots are practically equal. Then XI,=,3 = A:,=,3 + (D/2c) I/3 and the imaginary part 
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is bounded. Because D is small, the wave growth will also be bounded. In the strongly non- 
steady case, lwl decreases with time and lwl = c is possible for each particle during a time 
small compared to t e. 

4. Discussion of the Results. In our model, a short wavelength perturbation can grow 
only by a finite extent. Therefore an initial slowly varying flow subjected to a small per- 
turbation will change only slightly, and the Cauchy conditions will be correct. 

Equations (2.3)-(2.6) can also be used in describing discontinuous flows. The sta- 
bility of this system~requires a separate analysis. However if the discontinuity is spread 
out over a distance of order R, it can be considered as continuous in our model; however, in 
this case the functions n and f cannot be taken out from under the integral sign in the defi- 
nition of G'. This leads only to an insignificant change in the formfactor of (3.5) and all 
results concerning the short wavelength behavior remain in force. It should be pointed out 
that the physical relevance of the model over distances of order R will be determined by how 
realistic the force fD is. 

Instead of an integrodifferential system, at first glance it would appear to be simpler 
to use a differential approximation like (l.l). This can be done by expanding the slowly 
varying functions in the integral expressions (2.3), (2.4), (2.6) in Taylor series and keep- 
ing the first nonvanishing terms. This will lead to a purely differential system with de- 
rivatives with respect to the coordinates up to the third order. However, this system also 
leads to difficulties. In the stability analysis, this approximation is equivalent to re- 
placing the formfactor F(kR) by its long wavelength asymptotic value I -- (kR)2/10 and this 
leads to unbounded growth of perturbations for kR >> i. It is obvious that a differential 
approximation of any order will be unstable for large enough k and the corresponding Cauchy 
problem will be incorrect. This situation is different in principle from that in the gas- 
dynamics of a single phase. 

We briefly discuss the generalization of our method to slowly varying motion in three 
dimensions. The definitions of ~, fA, and G can easily be written in invariant form as in- 
tegrals over the particle volume without singling out a particular direction in space. The 
flow variables can be taken as volume-averaged; they will then be averaged over a plane per- 
pendicular to the propagation direction of the perturbation. One expects in the three-dimen- 
sional case that the smoothing out of short wavelength fluctuations insures the correctness 
of the Cauchy problem. 

For very small particle concentrations, one can treat the motion of the gas independently 
and then compute the motion of the particles as acted upon by the gas. In our paper, we 
have considered the case where the volume content of particles ~ is small, but not neglgible. 
Our approach ignores the random motion of the particles and hence the natural microscopic 
parameter is the particle radius R. The random displacement of a particle Ic must be much 
smaller than R and thus the pressure p2 << P, PW 2. It follows from the discussion of Sec. 
i for the equalization time [see Eq. (1.4)] that the random motion can be ignored for ~ ~ 10 -2 
to 10 -3 . In dense systems, or in cases where the time (1.4) is long, random motion of parti- 
cles will be significant. 
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MEASUREMENT OF CONDITIONALLY AVERAGED TURBULENCE 

CHARACTERISTICS IN THE PLANE WAKE BEHIND A CYLINDER 

A. A. Praskovskii UDC 532.517.4;532.525.2 

Methods describing turbulent flows using equations for probability density distribution 
(PDD) for velocity and concentration fluctuations are being actively developed [i, 2] in re- 
cent times. Such an approach to the study of turbulence is especially fruitful for the an- 
alysis of flows with chemical reactions. In formulating the closure of the equations for 
PDD, certain hypotheses based on the physical characteristics are used that require experi- 
mental verification. In particular, in obtaining the closure of equations for PDD of veloc- 
ity fluctuations [i] on the basis of the Kolmogorov-Obukhov theory [3], it has been hypothe- 
sized that in a turbulent flow, turbulent energy dissipation measured at a constant value of 
velocity, does not depend on this value. Measurements of the dispersion of the streamwise 
velocity gradient in the plane of symmetry in the wake behind a circular cylinder where the 
flow is fully turbulent have demonstrated the correctness of this hypothesis [4]. The ob- 
jective of the present paper is to verify the hypothesis given in [i] in those regions of 
turbulent flow where the intermittency coefficient is different from one, while the results 
of the measurements of the dispersion of the time derivative of streamwise velocity are used 
to estimate turbulent energy dissipation. During the measurements, a number of other con- 
ditionally averaged turbulent flow characteristics have been obtained which are of indepen- 
dent interest and some of them are also presented in this paper. 

i. Measurements were made in the plane wake behind a circular cylinder of diameter 
d = 36 mm at a relative distance x/d = 38.6 behind the cylinder. The cylinder was mounted 
at a nozzle section of diameter 1200 mm in a wind-tunnel with open test-section, the free- 
stream turbulence in the absence of the cylinder was 0.4% at the nozzle section and 0.6% at 
the measuring section. Tests were conducted at a velocity Uo = 5.24 m/sec, which corre- 
sponds to a Reynolds number Re = Uod/~ = 1.26.10 ~, where v is the kinematic coefficient of 
viscosity. Constant-temperature hot-wire anemometer DISA 55A01 with the transducer 55A22 
using platinized tungsten wire, 5 ~m in diameter and 1 mmlong, was used to measure streamwise 
mean velocity component U and velocity fluctuations u(t), where t is the time. The output 
signal was recorded in the measuring ChM magnetometer "MR 800A Labcorder" in the frequency 
range 0-5 kHz, the recording time for each frame was 45 sec. The recorded realizations 
were passed through filters with a characteristic slope of 48 dB/octave and the lower and 
upper frequency bounds f~ = 1 Hz and fu = 800 Hz, respectively, and then in frequency samp- 
ling of analog--digital converter fo = 5 kHz they were fed to a computer where their statisti- 
cal characteristics were computed. The limitation of the frequency range of fluctuations in 
the high-frequency region made it possible to ensure a signal-to-noise ratio of 39-43 dB, 
but led to a reduction in the values of dispersion of the velocity gradient (quantitative 
estimates are given below) in the tests, and the energy spectrum of fluctuating velocities 
rapidly falls with an increase in frequency. Hence there is always a certain frequency, 
approximately equal to 2 kHz in the given experiment, at which the spectral density of the 
signal and noise are equalled and above which the noise exceeds the signal. At 800 Hz, the 
signal level was an order of magnitude higher than the noise and it determined the choice 
of the frequency limit for the filter. It is worth noting that in these experiments the 
basic source of noise was the magnetograph whose characteristic dynamic range at fu = 5 kHz 
was approximately 37 dB. 
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